Elliptic PDEs in Probability and Geometry. Symmetry and regularity of solutions
نویسنده
چکیده
We describe several topics within the theory of linear and nonlinear second order elliptic Partial Differential Equations. Through elementary approaches, we first explain how elliptic and parabolic PDEs are related to central issues in Probability and Geometry. This leads to several concrete equations. We classify them and describe their regularity theories. After this, most of the paper focuses on the ABP technique and its applications to the classical isoperimetric problem —for which we present a new original proof—, the symmetry result of Gidas-Ni-Nirenberg, and the regularity theory for fully nonlinear equations.
منابع مشابه
A new embedding result for Kondratiev spaces and application to adaptive approximation of elliptic PDEs
In a continuation of recent work on Besov regularity of solutions to elliptic PDEs in Lipschitz domains with polyhedral structure, we prove an embedding between weighted Sobolev spaces (Kondratiev spaces) relevant for the regularity theory for such elliptic problems, and TriebelLizorkin spaces, which are known to be closely related to approximation spaces for nonlinear n-term wavelet approximat...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملThe Helically - Reduced Wave Equation as a Symmetric - Positive System
Motivated by the partial differential equations of mixed type that arise in the reduction of the Einstein equations by a helical Killing vector field, we consider a boundary value problem for the helically-reduced wave equation with an arbitrary source in 2+1 dimensional Minkowski spacetime. The reduced equation is a second-order partial differential equation which is elliptic inside a disk and...
متن کاملTensor-Sparsity of Solutions to High-Dimensional Elliptic Partial Differential Equations
A recurring theme in attempts to break the curse of dimensionality in the numerical approximations of solutions to high-dimensional partial differential equations (PDEs) is to employ some form of sparse tensor approximation. Unfortunately, there are only a few results that quantify the possible advantages of such an approach. This paper introduces a class Σn of functions, which can be written a...
متن کاملUP Partial Differential Equations
COURSE DESCRIPTION The course is an introduction to the study of partial differential equations (PDEs) using functional analysis and energy methods. Questions of existence, uniqueness and regularity for weak solutions to linear elliptic and parabolic PDEs will be emphasized. Various nonlinear PDEs will also be studied, using a variety of different approaches, like variational and monotonicity m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006